Characterization of large vacancy clusters in diamond from a generational algorithm using tight binding density functional theory.
نویسندگان
چکیده
Point defects and pores in diamond affect its optical and electrical properties. We generated and evaluated a large number of vacancy V(n) clusters representing nanosized voids in diamonds for n up to 65. Our generational algorithm spawns the new generation n + 1 from the list of the most stable structures in the previous generation n. With energy as the only criterion, we generate a large structural diversity that allows their unbiased analysis. Since π-electron delocalization is important for carbon, we used quantum mechanical tight-binding density functional theory (TBDFT). Adamantane-like globular shapes are preferred for n up to ∼22. Beginning around n≈ 35, the most stable structures show overall oblate shapes with some irregularities. These novel structures have not been seen before because hitherto only highly regular structures were considered. We see local graphitization in these relaxed structures providing an atomistic justification for the widely used "slit pore" model. The preference for structures with minimum number of cut bonds diminishes as n increases. There are no particularly stable "magic" sizes for vacancy clusters larger than n = 22 indicating that these larger voids can easily incorporate small vacancies and vacancy clusters. Radial distribution analysis shows that unusual contact or bond distances in the 1.6 to 2.8 Å range appear in the vicinity of the internal surfaces of the vacancy clusters. Extremely long C-C bonds emerge as a result of structural relaxation of the dangling bonds in the vicinity of the vacancy clusters that cannot be simply described by ordinary sp(2)/sp(3) hybridization.
منابع مشابه
Effect of Curvature on the Mechanical Properties of Graphene: A Density Functional Tight-binding Approach
Due to the high cost of experimental analyses, researchers used atomistic modeling methods for predicting the mechanical behavior of the materials in the fields of nanotechnology. In the pre-sent study the Self-Consistent Charge Density Functional Tight-Binding (SCC-DFTB) was used to calculate Young's moduli and average potential energy of the straight and curved graphenes with different curvat...
متن کاملTheoretical determination of stable fourfold coordinated vacancy clusters in silicon
We have identified stable fourfold coordinated vacancy clusters Vn 3 n 18 in Si using a combination of metropolis Monte Carlo, tight-binding molecular-dynamics, and density-functional theory calculations. Our calculations show that the small vacancy defects exclusively favor fourfold coordination thermodynamically rather than hexagonal ringlike structure formation, which has widely been adapted...
متن کاملThe Effect of Substitution of a Zn Atom in Cdn-1TenClusters (n=1-10)
In this research, structural and electronic properties of ZnCdn-1Ten clusters (n=1-10) have been studied by formalism of density functional theory and using the projector augmented wave within local density approximation. The structural properties (such as bond length/angle and coordination number), electronic and optical properties (such as binding energy, Kohn-Sham spect...
متن کاملInvestigation of Nickle nanoclusters properties by density functional theory
Clusters play important role for understanding and transferring microscopic to macroscopic properties.Geometric and electron properties of Small nickel clusters up to the tetramer has been investigated by Density Functional Theory (DFT). Raising the number of nickel clusters atoms were indicated decreasing the average equilibrium (Ni-Ni) distance of atoms and also the binding energy of per atom...
متن کاملرسانایی و ابررسانایی توسط تهی جاهای الماسی
Motivated by the idea of impurity band superconductivity in heavily Boron doped diamond, we investigate the doping of various elements into diamond to address the question, which impurity band can offer a better DOS at the Fermi level. Surprisingly, we find that the vacancy does the best job in producing the largest DOS at the Fermi surface. To investigate the effect of disorder in Anderson l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 12 42 شماره
صفحات -
تاریخ انتشار 2010